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We shall investigate a mechanical system whose vibrations are controlled 
by the differential equation 

r + ai + f (2) = N sign (& - i) (1) 

where CL, N and 52 are positive constants, and f(x) is an odd periodic 
function with a continuous derivative, which in the interval [- II, n I 
has the following two roots: 

xf (4 > 0 near x=0, f (n) = f (0) = 0 (2) 

When f(x) = sin L then the differential equation (1) controls vibra- 
tions of the Froude pendulum [ 1 I. 

We shall investigate a solution of (1) in the form i = i(x), periodic 
with respect to X. This solution represents circular motions of the 
Froude pendulum with completely defined F( fb P) = N sign (Q-2). This 
last function characterizes friction of the shaft in the bearing of the 
pendulum, where Cl is the angular speed of the shaft. Investigating only 
the torsional motion as obtained from (l), we shall assume that 

A’> max / (2~) (3) 

Equation (1) is equivalent to the system of differential equations 

J: = Y> 4 = - ccy -~ (f (z) f- N sign (i -- Q)] (4) 

which can be written in the form rf two systems. setting 

Nsign(y--Q)==+N wheny>Q, N sign (y - &) = --N when y < Q (5) 

Thus instead of investigating trajectories described by the system 
(4). we shall investigate trajectories described by the systems 
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x = Y, i=--ay-VWfNl (6) 
X=_ YP Y=-ay-[[f(x)-NN] (7 

The cylindrical phase space of the systems (6) and (7). equivalent to 
the investigated system (4). will be developed on the xy-plane. Traj ec- 
tories will repeat themselves periodically on strips, 2n wide, along the 
y-axis. For this reason it is sufficient to investigate only one trajec- 
tory of the system (4) which is traced, for example, in the strip 
--n<x<n. -w< y<oo, and the results of this investigation will 
apply to all the periodically repeated trajectories traced in the xy- 

plane. 

The systems (6) and (7) under the conditions (2) and (3) have no 
singular points and no limit cycles of the first kind, which correspond 
to trajectories of these systems periodic with respect to t. All trajec- 
tories of both (6) and (7) when t + ~0 approach asymptotically a unique 
stable limit cycle [ 1 1 of the second kind, which embraces the cylindrical 
surface of the phase space. This limit cycle for the system (6) is in the 
half-plane y < 0 and for the system (7) in the semi-plane y > 0. Con- 
sequently, the investigated system (4) has no singular points and no 
limit cycles of the first kind. All its trajectories are attracted by the 
stable limit cycle Y when t + 00. It should be mentioned that although the 
parameter fi does not appear explicitly on the right-hand sides of Equa- 
tions (6) and (7), nevertheless it exerts a considerable influence on the 

trajectories of the system (4). For this reason we must study variations 
of the trajectories of the system (4) when Q varies. 

In order to be specific, we shall consider only values fi > 0. It is 
obvious that the presence of the limit cycle of the second kind ye of the 
system (7) influences trajectories of the system (4). and among others, 
it influences the ratio of fi to the extrema of y,(x), that is. to the 
solution of the system (‘I), periodic with respect to X. Consequently, we 
will investigate in detail the character of trajectories of the system 
(7). 

We introduce the curve of monotonicity 

N--f(x) 
Y= a 

ED(X) 

This curve, together with the x-axis,divides the xy-plane into regions 
where the derivative dy/dx of the system (7) has the same sign. The 
periodic solution ye(x) of (7) has its extrema on the curve of monoton- 
icity. 

The boundaries for the variations of fi are the extrema of the curves 
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Y = Y,(X) and y = 4(x). Let th e values of a satisfy the inequality 

Then it can be easily shown that the critical line y = Q is the line 
of no contact [ 11 for the system (4). This means that the limit cycle Y 

of the investigated system (4) and the limit cycle y,, of the system (7) 
equal each other. All the trajectories of (4) approach ye asymptotically 
when t + Q), and in the half-plane y < fi they merge with the trajectories 
of the system (7). On the line y = fi the trajectories have a “kink”, and 
when y > 0 they continue as the trajectories of the system (6). Similar 
cycles of the second kind will be called “ordinaryn, because the trajec- 
tories approach them asymptotically as t -) 0~. Let us have further 

mazy0 (CC) < 52 < max 0 (1~) (10) 

The line y = fi intersects the curve of monotonicitY (8). When at some 
instant of t the point [ x(t), y(t) 1 of the system (4) coincides with any 
segment of the line y = CI such that y < #x), then it cannot leave the 
segment and has to move along it as t increases. We shall call such a 
segment “segment of capture” of 
the system (4). For the values 
of Q under consideration we 
have only one segment of capture y 
of the system (4) in the strip 
-l7C.%<87. /4 4 4 4 

\’ \ 
1 \’ X 

Let us denote by r this tra- 
jectory x = x(t), y = (t) of the Fig. 1. 

system (4) which exists from the 
right end of the segment of 
capture (Fig. 1) in the strip - w < x < rr. This means that for the tra- 
jectory r there exists t = T < 00, such that the point [ x(T), y( 77 1 be- 
longing to the trajectory of (4) coincides with the right boundary point 
of the segment of capture in the strip - R < x < B. Let us study the 
trajectory when t > T. A curve merging with the trajectory r will be de- 

noted by y = r(z). A trajectory 
which exits from the right end of 
the segment of capture (Fig. 1) 
in the strip w < x < 31~ (which is 
a periodic repetition of the tra- 
jectory r) will be denoted by rl. 
and so on. 

Fig. 2. Every segment of capture de- 

termines the existence of a whole 
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family of trajectories of (4) which coincide for some finite values of t 
with the trajectories r, rl, and so on. Such families of trajectories 

will be denoted by v,., vr , and so on. 
1 

From the inequality (10) it follows that fi > max yO(x), which means 
that the limit cycle y0 of the system (7) is also the limit cycle of the 
system (4). The trajectory r of (4) which is at the same time a trajec- 
tory of (7) is above its limit cycle and has the property that r(x) > 
r(x + 2~) for all x in the region where the curve y = r(x) exists. It 
means that r -2 vr . Consequently, the trajectory r approaches asap- 
totically the cycle Y = yO of the system when t -+ 00. 

Thus, when fi satisfies the inequality (10). the ordinary cycle Y of 
(4) equals the cycle y0 of (7). just as in the case when 8 satisfied the 
inequality (9). The case (10) differs from the case (9) in that the 
existence of segments of capture in (4) has resulted in the families of 
the trajectories v,., v 

'1' 
and so on, which merge with the trajectories 

r, r1 and so on, respectively, and approach asymptotically the cycle when 
t + m (Fig. 1). 

We shall assume now that 52 satisfies the equality 

Q = max y. (r) (11) 

In this case, as in previous cases, the cycle Y of the system (4) 

equals the cycle y,, of the system (7). but it is not an ordinary cycle 
now, in the sense of our previous definition. Indeed, for y < yD, as in 
the previous case, all the trajectories of (4) being also traJectories 
of (7) approach asymptotically the cycle as t + Q), but for y > y0 each 
trajectory of the system (4) merges with the limit cycle at finite in- 
stants of t. We shall call a cycle of (4) of the second type a “special 
cycle” if there is a class of trajectories of the system (7) merging with 
that cycle at finite value of time t. Suppose that Q satisfy the inequal- 
ity 

min 0 (z) < 52 < max y. (2) (12) 

This means that in the strip - n Q x Q 71 the system (4) has only one 
segment of capture. We shall denote by rO the trajectory of the system 
(7) which merges with the trajectory r when y < a. Since Q < max y,(x). 
the trajectory r,, belonging to the system (7) and located below the cycle 
y0 will approach asymptotically the cycle y,, Chen t + m. Consequently, 
for the trajectory rO the inequality rO(x) < r,,(z + 2~) will be satisfied 
for every x in this region of the half-plane y > 0 where the curve y = 

rO(x) exists. For the above reason the trajectory rO must intersect the 
segment of capture (Fig. 2) in the strip s < L < 3~, meaning that r 6 v 

‘1’ 
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Thus, when a satisfies the inequality (12). then in the strip - 17 Q 
x Q R the limit cycle of the system (4) will consist of the trajectory r 
and of a certain part of the segment of capture. This pattern is repeated 
periodically on all the strips of width 2vr in the xy-plane. The cycle Y 
will then be a special cycle and all the trajectories of the system (4) 
will merge with this cycle. Finally, let US assume that fi satisfies the 
inequal i ty 

O<Q<nrin0((2) (13) 

It can be easily shown that in this case the critical line y = fi is 
also the line of capture and also a special cycle of the system (4). We 
have proved thus the following theorem: 

Theorem 1. All the trajectories of the system (4) satisfying the con- 
ditions (2) and (3) when t + -, attract each other through the limit 
cycle of a second kind, either asymptotically or merging with it at 
finite instants of time. 

It is obvious that the value Cl = max yu (xl, where yu is a periodic 
solution of the system (7), is a bifurcation value of the parameter fl 
for the system (4). When a satisfies the inequality 0 < n < max y,(r), 
then the system (4) has an ordinary limit cycle. 

Theotea 2. If the system (4) satisfying the conditions (2) and (3) 
satisfies also the inequality 0 < fl < N/a, then the system has a special 
cycle; when the system satisfies the inequality 

p> N$max f(4 
ci 

then it has an ordinary cycle. 

The proof of this theorem follows from the estimate 

-$< 
N - 

max YO (4 < max 
f (4 

c1 

Here N/a is the mean value of the function y,(r) which is the periodic 
solution of the system (7) in the interval [- n. R I. 
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